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Fig. I—A type of standard phase shifter.
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Fig. Z—Differential phase shifter.

But if one waveguide section has a different
cutofi” wavelength h. from the other, then

the phase shift Y is not equal to zero; instead,
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where the guide wavelength A G is related to

the cutoff wavelength & by
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The cutoff wavelengths of the two wave-

guides can be chosen to produce any phase
shift ~ between zero and the limiting case

when one waveguide is operating below cut-
off and the phase shift z is that of a single
phase shifter alone.

Such a differential phase shifter has a
number of potential applications such as the
following. .\s the above standard phase

shifter is extended to higher frequencies,
say abo~-e 30 Gc, it takes a smaller displace-

ment to produce the same phase shift; hence,

errors in determining this displacement pro-

duce correspondingly larger errors in the
phase shift. This situation can be avoided

by using a differential phase shifter as de-
scribed above, with the waveguide cutoff
frequencies chosen so that the phase of the
output ~,aries more slowly than it would if it
w-ere tracking the position of one short cir-
cuit.

For example, at an operating frequency

of 75 Gc. if one wavemride section is WR-15

and the’other is W~-12, xG1=O.5230 cm,

and h G, = 0. L1719 cm. .k displacement of
0.2615 cm will produce a phase shift of 39

degrees, which is approximately one ninth

of the phase shift that would be produced
by a single phase shifter using L\’R- 12 wave-

guide.
Another application is in the investiga-

tion of uniformity of wa~-eguide sections and
the suitability of short circuits for phase
shift standards. If the arrangement of Fig.
2 is used and the two waveguide sections are
nominally identical, there will ideally be

zero phase shift of the output as the short
circuits are moved. Any phase shift which

actually does occur is due to deficiencies in
the short circuits or the waveguide sections,
or in both.

.Inother application might consist of the

determination of relative displacement from
the measurement of phase shift. This would
require that the motion of the two short

circuits be independent rather than ganged.

The sensitivity of phase shift to relative

displacement could be preselected by choos-
ing the cutoff frequencies of the individual

waveguides as desired.

If the tuners are dispensed with, the

differential phase shifter will still function

but with reduced accuracy, due to the finite

directivities of the directional couplers and

the reflections in the system.
ROBERT IV. BrMTTY

Radio Standards Lab.
Boulder, Colo.

An Extension of the TEoI. Resona-

tor Method of Making Measure-

ments on Solid Dielectrics

Dielectric measurements using cylin-

drical cavities resonating in the TEo1n mode

are discussed by several authors.1–4 The
cavity is physically arranged as illustrated
in Fig. 1, and the dielectric properties of the

specimen are determined from three experi-
mentally observed variables: the resonant

frequency, the phase shift constant of the

empty resonator and the Q of the cavity.
The dielectric constant and loss tangent of
the specimen are then calculated using
formulas which are strictly valid only if the
losses of the sample-filled cavity are very

small.
The purpose of this communication is,

first, to show that it is possible to remove the
restriction of low-loss samples and, second,

to suggest a departure in the experimental
procedure which eliminates the necessity of

performing the usual quality-factor meas-
urements.

Fig. 1 shows a right-circular cylindrical

cavity, of radius a and length 1, partially
filled with a disc-shaped dielectric slab of
thickness d, permitti~-ity e and conductiv-
ity cr. The problem is to evaluate E and a
from measured quantities that are to be

specified later. As with the investigation of
any resonant structure, the present study

is concerned with three fundamental issues:

the normal modes or free oscillations of the
cavity, its forced oscillations and resonance.

In what follows these issues are discussed in

that order.
The normal modes of the sample-filled

cavity are solutions of Maxwell’s equations
subject to conditions that must be satisfied

at the boundaries. Thus, if the resonator
has perfectly conducting walls, the general

Manuscript received March 11, 196.3; revised
hrovember 12, 1963. Sponsorship of this work W:S
provided by the Lockheed-Georgia Company, a dlVI-
sion of Lockheed Aircraft Corp.

, A, Von I-Iirmel. ‘(Dielectric Materials and .\ P-

placations, ” John Wdey and Sons, Inc., blew York,
N. Y., PP. 63-122; 1954.

s 1?, Homer d al., ‘<Resonance methods of chelectnc
measurement at centimeter wavelength s,” part 1II,
J. InsL Elec. En#’s. (1.omfon), vol. 93, IJP. 53–68;
January, 1946.

s C. G. Montgomery>,, “Technique of Mlcl-owave
Measurements, ” McGrav-IIdl Book Co., Inc., New
York, N. Y., P. 625; 1947.

~ I. Hartshorn and J .4. Saxton, “The dispersion
and absorption of electromagnet waves, ” in ‘:Enc~ck-
pedia of Physics, ” Sminger-Verlag, Berlin, berm any,
pp. 679–685; 1958.

I

7LUNGER—

SPECIMEN—

1G

TO SOURCE

t-

1
w
Q-J

J-~
r.———

l-l a r

Fig. l—TEoin resonant cavity for measuring the
dielectric properties cf solids.

TE,l field configuration in the dielectric

region may be specified by the familiar rela-

tions

Efl = ~ Jo’(hr) [Ce–yz + C’e~S]e’~

H, = – f Jo’(hr) [Cc–?’ -- C’eyz]e’t

H. = Jo(h) [Ce-~2 + C’e~’’]e’t (1)

p – 72 = — ~zp,c

11= 3.832/a

6, = E + u/’s

where the real and imaginary parts of the

frequency s = – w+~ti and those of the

propagation factor y = a +jfl are as yet un-

known. In the sample-free portion of the

cavity, the corresponding tield relations are

Eoo = ~ YO’(lZr) [COe–~o”+ CO’e~Oz]e’~

11,0 = – ~.To’(/Lr) [COe-~’O’– CO’e~O’]e’t

Ha, = JO(hr) [COe-W + CO’e~o’]e’t (2)

1P — 702 = — S3L0,F0

IL = 3.832!/a

70 = Czo + 3?0.

In (2), co denotes the permittivity of the

empty space and, except in the case of the
Bessel function, the subscript zero refers to
quantities pertaining to the empty portion
of the sample-loaded cavity.

Boundary conditions require that the
tangential component of E and the normal

component of B must vanish at z = O and at

z= i. Also, the tangential components of E
and H and the normal component of B must
be continuous at s = J-- d. Applying these
conditions yields

N tanho”(l – d) + -~ tanh yd = O. (3)
?’0 7’

Eq. (3) expresses mathematically the condi-

tion for free oscillations. IVnte that, when



252 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES

~ = KOand a= ao = O (lossless resonator), this
equation reduces to

tan ~o(l – d) tan lii
— —.—

Do = @ ‘
(4)

which is just (31) in Homer, et al.
Eq. (3) together with the relations

hz –72 = SZWCC and lz2 –72 = –S2PW0 impose

six conditions on a total of eight field pa-
rameters, namely CM, BO, a, (3, o, CO,, e and u.

Sohstions for any six of these may, therefore,

be obtained provided that measurements
have been made to evaluate the remaining

two. It should be emphasized, however,

that such measurements must be conducted
while tbe sample-filled cavity is undergoing

a transient response under the influence of a
unit impulse of excitation. For it is then that
the oscillations are natural. However, the
field in the cavity may decay so rapidly that

no measurements can be performed with

any degree of accuracy. Of course, if the
cavity losses are relatively small, as is often

the case in practice, the necessary measure-
ments can be made under steady-state

sinusoidal operating conditions. It is obvi-
ous, therefore, that the equations of free os-
cillations are valid representations of forced

oscillations only if the cavity is virtually
lossless. A different set of equations is
needed when the losses in the cavity are rela-

tively high.
Careful examination of the conditions

for free oscillations shows that, if the speci-

men under test is characterized by a finite,

nonzero conductivity, the frequencies of

free oscillations and the associated propaga-

tion constants are complex. The important
implication of this fact is often overlooked.
It is generally true that, when driven sinu-
soidally in time, the specimen-loaded cavity
cannot be forced to oscillate at any one of
its natural frequencies and that, therefore,
(3) does not hold under these conditions.
The significant issue in this, as in the case of

any 10SSY resonator, is the definition of
resonance. With regard to this question the

viewpoint adopted here is that by resonance

of a 10SSY system is meant the phenomenon

that takes place when, under steady-state
sinusoidal operating conditions, the response
of the resonator reaches a relative maximum
with variations in frequency. The corre-
sponding frequencies are, by definition, the
resonant frequencies of the resonator.

The next problem, therefore, is to de-

termine the condition of resonance for the

specimen-loaded cavity of Fig. 1.
It is a well-known fact that in a linear

system the natural frequencies of oscilla-
tion are the poles of the transfer function
for the particular problem being investi-

gated or, stated in another way, the zeros of
its denominator. Accordingly, if D(s) de-
notes this denominator, the natural frequen-

cies of oscillation are the roots of the alge-
braic equation D(s) = O and the resonant
frequencies may be defined by the roots of
the equation

&@) I = o.

By analogy, the natural freguenc;es of oscil-

lation of the Iossy, but linear, resonator of

Fig. 1 are solutions of (3), while its resonant

frequencies are solutions of the equation

: (u’+ 2’) = o (5)

where a and v are, respectively, the real and
imaginary parts of the left-hancl member
of (3) evaluated at s =j~, TO =j(30 and ? ‘a

+j3. The condition for resonance, ex-
pressed by (5), together with the relations

?S2+(302 = CNMWO and hz —72 = ap(~ —ju/co)
constitute a set of four equations expressing
relations among a total of six variables,
namely PO)a, @, U, c and a, The des~red quan-

tities ● and u (and, hence, the loss tangent)
may be determined from these equations

using measured values of either ~ and L?, or

PO and P. (A method for measuring phase
shift constants has been reportedl by Sim-
mons.s) The tacit assumption is, of course,

that the specimen-filled cavity must be at
resonance and its dimensions must remain

fixed while measurements of the selected

pair of variables are being made. It is evi-

dent that while the results of these measure-

ments could ultimately be used tc) evaluate
the Q of the specimen, the solution of the
problem at hand may be completed by the

present method without introducing Q into
the calculations.

D. T. PARIS

School of Elec. Engrg.
Georgia Inst. of Technology

Atlanta. Ga.
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Bounds on the Elements of the Sus-

ceptance Matrix for Asymmetrical

Obstacles in Waveguides

There exists a methodl–8 for the deter-

mination of upper and lower bounds on the

elements of the reactance matrix B, or the

equivalent network elements, for multi-
channel scattering. This technique was ap-
plied~ to specific examples of lossless ob-
stacles in a rectangular waveguicle, which
are symmetric with respect to some plane
perpendicular to the axis of the wa~-eguide.
The problem was analyzed in “terms of un-

coupled even and odd standing waves.

,~umerical results were obtained3 for one-
dimensional quantum mechanical scatter-

ing bv an asymmetric potential V(x)
# V’( –x).
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It is the purpose of this communication
to derive bounds on nonsymmetric obstacles
in rectangular waveguide (see Fig. 1) by

following the procedure of Bartram and
Spruch,s and adapting certain of their re-

sults, 2–4 (We refer the reader to the above
mentioned references for a discussion of the

details which are only sketched or omitted

here. )
The electric field intensity E(r) satisfies

the differential matrix equation

ct3E= –VXVXE+ [(0’/.2) +V]E

= o. (1)

E and the matrix potential V are expressed

in terms of even and odd functions of z, the
direction of propagation.

E,
E=

()Ed ‘ ‘=%: %) ‘“

where

w. = W, = w = coz(. – 1)/6’.

w c and e are the angular frequency, velocity
of light and relative permittivity of the
obstacle, respectively. Since the two chan-
nels (corresponding to the even and odd por-

tions of tbe electric tield) are coupled by the

matrix potential, three parameters are re-
quired to describe the asymptotic effects of

the scattering process. The asymptotic form
of Efor s++@ is

E = f(x, y) [e~ cos (kz + 0)

– B~e~ sin (kz + 0)], (3)

\vhere f(x, y) is the form function for the

propagating mode, BO is the susceptance

matrix, e.. is an amplitude column matrix
()< f?<r, and k! is (OJ/C)2-(T/a)2 (a is the

wide dimension of the guide).
In order to obtain bounds on the sus-

ceptance matrix we have to consider an
associated eigenvalue problem with certain

boundary conditions,

$+.(r) + vndr) = 0, (4)

where IIJWand P. are its eigenfunctions and
eigenvalues, respectively, and where p(r) is

a real, positive definite Hermitian matrix.

Let ad and –@O be the smallest positive and
smallest (in absolute value) negative eigen-
value, respectively, associated with the
eigenmodes of (4). The upper and lower

bounds on a quadratic form of the suscep-
tance matrix are5

—%-1s(SE,) t(p-’43EJdr

s< &-’ (J3EJt(@-’&EJdr,

where EL is a trial function which is required
to have the asymptotic form of E, (3), but
the unknown B@ is replaced by %. The
range of integration of dr is over the interior
of the waveguide (z> O).

The abo~,e theory will now be applied

to uonsymmetric obstacles in waveguide
extending a distance d in the G direction (see

5 The symbol t stands for the Hermit ian adjoint.


