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Fig. 1—A type of standard phase shifter.
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Fig. 2—Differential phase shifter.

But if one waveguide section has a different
cutoff wavelength A, from the other, then
the phase shift ¢ is not equal to zero; instead,

v=tm () ®

where the guide wavelength A ¢ is related to
the cutoff wavelength A, by

1 1 1

The cutoff wavelengths of the two wave-
guides can be chosen to produce any phase
shift ¢ between zero and the limiting case
when one waveguide is operating below cut-
off and the phase shift ¢ is that of a single
phase shifter alone.

Such a differential phase shifter has a
number of potential applications such as the
following. As the above standard phase
shifter is extended to higher frequencies,
say above 30 Gg, it takes a smaller displace-
ment to produce the same phase shift; hence,
errors in determining this displacement pro-
duce correspondingly larger errors in the
phase shift. This situation can be avoided
by using a differential phase shifter as de-
scribed above, with the waveguide cutoff
frequencies chosen so that the phase of the
output varies more slowly than it would if it
were tracking the position of one short cir-
cuit.

For example, at an operating frequency
of 75 Ge, if one waveguide section is WR-15
and the other is WR-12, A1 =0.5230 cm,
and g, =0.4719 cm. A displacement of
0.2615 cm will produce a phase shift of 39
degrees, which is approximately one ninth
of the phase shift that would be produced
by a single phase shifter using WR-12 wave-
guide.

Another application is in the investiga-
tion of uniformity of waveguide sections and
the suitability of short circuits for phase
shift standards. If the arrangement of Fig.
2 is used and the two waveguide sections are
nominally identical, there will ideally be
zero phase shift of the output as the short
circuits are moved. Any phase shift which
actually does occur is due to deficiencies in
the short circuits or the waveguide sections,
or in both.

Another application might consist of the
determination of relative displacement from
the measurement of phase shift. This would
require that the motion of the two short
circuits be independent rather than ganged.

Correspondence

The sensitivity of phase shift to relative
displacement could be preselected by choos-
ing the cutoff {requencies of the individual
waveguides as desired.

If the tuners are dispensed with, the
differential phase shifter will still function
but with reduced accuracy, due to the finite
directivities of the directional couplers and
the reflections in the system.

ROBERT W. BEATTY
Radio Standards Lab.
Boulder, Colo.

An Extension of the TEy, Resona-
tor Method of Making Measure-
ments on Solid Dielectrics

Dielectric measurements using cylin-
drical cavities resonating in the TEqy, mode
are discussed by several authors.’™ The
cavity is physically arranged as illustrated
in Fig. 1, and the dielectric properties of the
specimen are determined from three experi-
mentally observed variables: the resonant
frequency, the phase shift constant of the
empty resonator and the Q of the cavity.
The dielectric constant and loss tangent of
the specimen are then calculated using
formulas which are strictly valid only if the
losses of the sample-filled cavity are very
small.

The purpose of this communication is,
first, to show that it is possible to remove the
restriction of low-loss samples and, second,
to suggest a departure in the experimental
procedure which eliminates the necessity of
performing the usual quality-factor meas-
urements.

Fig. 1 shows a right-circular cylindrical
cavity, of radius a and length I, partially
filled with a disc-shaped dielectric slab of
thickness d, permittivity e and conductiv-
ity o. The problem is to evaluate e and ¢
from measured quantities that are to be
specified later. As with the investigation of
any resonant structure, the present study
is concerned with three fundamental issues:
the normal modes or free oscillations of the
cavity, its forced oscillations and resonance.
In what follows these issues are discussed in
that order.

The normal modes of the sample-filled
cavity are solutions of Maxwell's equations
subject to conditions that must be satisfied
at the boundaries. Thus, if the resonator
has perfectly conducting walls, the general
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Fig. 1—TEot, resonant cavity for measuring the
dielectric properties of solids.

TEn field configuration in the dielectric
region may be specified by the familiar rela-
tions

Eg = ihli Jo' () [Cere 4 Clere]est
y ’ 1y /
H, = — —h~]0 () [Cers — CTevs]et
H, = Jy()[Cer 4 Clere]est 1
I — a2 = — s%ue,
I = 3.832/a
€& =€+ afs

where the real and imaginary parts of the
frequency s= —wi+jw and those of the
propagation factor y=oa-+j8 are as vet un-
known. In the sample-free portion of the
cavity, the corresponding field relations are

Ly

0

= 5}“—" To () [Coe™1o# + Ceno¥]est
(3

ey = — 1;19]0,(/&?) [Coevo7 — Cy'evoz]est

H,, = Jo(ir)[Cognz + Cylenelest (2)

]lz _— ’)/[)2 = - 82)1,0450
I = 3.832/a
Yo = ao + jBo-

In (2), e denotes the permittivity of the
empty space and, except in the case of the
Bessel function, the subscript zero refers to
quantities pertaining to the empty portion
of the sample-loaded cavity.

Boundary conditions require that the
tangential component of E and the normal
component of B must vanish at =0 and at
2=1. Also, the tangential components of E
and H and the normal component of B must
be continuous at s=I--d. Applying these
conditions vields

B0 anhno(l — d) + = tanhvd = 0. (3)
Yo Y

Eq. (3) expresses mathematically the condi-
tion for free oscillations. Note that, when
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w=puo and a=ap=0 (lossless resonator), this
equation reduces to

tan Bo(l — d) _ tan Bd
Bo B

which is just (31) in Horner, et al.

Eq. (3) together with the relations
h?—~2=s5%e, and h?—v2= —s%ue impose
six conditions on a total of eight field pa-
rameters, namely ag, B0, ¢, 8, ®, w, e and 0.
Solutions for any six of these may, therefore,
be obtained provided that measurements
have been made to evaluate the remaining
two. It should be emphasized, however,
that such measurements must be conducted
while the sample-filled cavity is undergoing
a transient response under the influence of a
unit impulse of excitation. For it is then that
the oscillations are natural. However, the
field in the cavity may decay so rapidly that
no measurements can be performed with
any degree of accuracy. Of course, if the
cavity losses are relatively small, as is often
the case in practice, the necessary measure-
ments can be made under steady-state
sinusoidal operating conditions. It is obvi-
ous, therefore, that the equations of free os-
cillations are valid representations of forced
oscillations only if the cavity is virtually
lossless. A different set of equations is
needed when the losses in the cavity are rela-
tively high.

Careful examination of the conditions
for free oscillations shows that, if the speci-
men under test is characterized by a finite,
nonzero conductivity, the frequencies of
free oscillations and the associated propaga-
tion constants are complex. The important
implication of this fact is often overlooked.
It is generally true that, when driven sinu-
soidally in time, the specimen-loaded cavity
cannot be forced to oscillate at any one of
its natural frequencies and that, therefore,
(3) does not hold under these conditions.
The significant issue in this, as in the case of
any lossy resonator, is the definition of
resonance. With regard to this question the
viewpoint adopted here is that by resonance
of a lossy system is meant the phenomenon
that takes place when, under steady-state
sinusoidal operating conditions, the response
of the resonator reaches a relative maximum
with variations in frequency. The corre-
sponding frequencies are, by definition, the
resonant frequencies of the resonator.

The next problem, therefore, is to de-
termine the condition of resonance for the
specimen-loaded cavity of Fig. 1.

It is a well-known fact that in a linear
system the natural frequencies of oscilla-
tion are the poles of the transfer function
for the particular problem being investi-
gated or, stated in another way, the zeros of
its denominator. Accordingly, if D(s) de-
notes this denominator, the natural frequen-
cies of oscillation are the roots of the alge-
braic equation D(s)=0 and the resonant
frequencies may be defined by the roots of
the equation

@

d
d—w|D(jw)] =0.

By analogy, the natural frequencies of oscil-
lation of the lossy, but linear, resonator of
Fig. 1 are solutions of (3), while its resonant
Sfrequencies are solutions of the equation
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where « and v are, respectively, the real and
imaginary parts of the left-hand member
of (3) evaluated at s=jw, yo=7Bs and y=«
-+j8. The condition for resonance, ex-
pressed by (5), together with the relations
B 4Bot=cwlue and I2—ryi=oule—jo/w)
constitute a set of four equations expressing
relations among a total of six variables,
namely By, @, 8, ®, eand o. The desired quan-
tities € and o (and, hence, the loss tangent)
may be determined from these equations
using measured values of either w and 8, or
Bo and B. (A method for measuring phase
shift constants has been reported by Sim-
mons.’) The tacit assumption is, of course,
that the specimen-filled cavity must be at
resonance and its dimeunsions must remain
fixed while measurements of the selected
pair of variables are being made. It is evi-
dent that while the results of these measure-
ments could ultimately be used to evaluate
the Q of the specimen, the solution of the
problem at hand may be completed by the
present method without introducing Q into
the calculations.
D. T. Paris
School of Elec. Engrg.
Georgia Inst. of Technology
Atlanta, Ga.
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Bounds on the Elements of the Sus-
ceptance Matrix for Asymmetrical
Obstacles in Waveguides

There exists a method!~? for the deter-
mination of upper and lower bounds on the
elements of the reactance matrix B, or the
equivalent network elements, for multi-
channel scattering. This technique was ap-
plied! to specific examples of lossless ob-
stacles in a rectangular waveguide, which
are symmetric with respect to some plane
perpendicular to the axis of the waveguide.
The problem was analyzed in terms of un-
coupled even and odd standing waves.
Numerical results were obtained® for one-
dimensional quantum mechanical scatter-
ing by an asymmetric potential V(x)
#V(—x).
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It is the purpose of this communication
to derive bounds on nonsymmetric obstacles
in rectangular waveguide (see Fig. 1) by
following the procedure of Bartram and
Spruch,?® and adapting certain of their re-
sults,?™* (We refer the reader to the above
mentioned references for a discussion of the
details which are only sketched or omitted
here.)

The electric field intensity E(r) satisfies
the differential matrix equation

LE= —VXVXE+ [(w/) +VIE
=0. (6))

E and the matrix potential V are expressed
in terms of even and odd functions of 2, the
direction of propagation.

E, 1 /W, W
E= ( )’ V= _( W 3 (2)
Eg 2 VVO W¢

where
W, =W, =W = wle — 1)/c%

w, ¢ and e are the angular frequency, velocity
of light and relative permittivity of the
obstacle, respectively. Since the two chan-
nels (corresponding to the even and odd por-
tions of the electric field) are coupled by the
matrix potential, three parameters are re-
quired to describe the asymptotic effects of
the scattering process. The asymptotic form
of Efor z—4« is

E = f(x, »)[eq cos (kz + 6)
— Bgegsin (kz +6)], (3)

where f(x, v) is the form function for the
propagating mode, By is the susceptance
matrix, eg is an amplitude column matrix
0<0<m, and %2 is (w/c)2—(x/a)? (a is the
wide dimension of the guide).

In order to obtain bounds on the sus-
ceptance matrix we have to consider an
associated eigenvalue problem with certain
boundary conditions,

Lu(t) + wno(r) =0, 4

where 1, and u, are its eigenfunctions and
eigenvalues, respectively, and where p(r) is
a real, positive definite Hermitian matrix.
Let oy and —Bg be the smallest positive and
smallest (in absolute value) negative eigen-
value, respectively, associated with the
eigenmaodes of (4). The upper and lower
bounds on a quadratic form of the suscep-
tance matrix are’

—oyt [ (©BI 0SB
< key'Bypeg — kestBoeg  (5)

+ f EcheE(dT

<o [ (LB LB,

where E, is a trial function which is required
to have the asymptotic form of E, (3), but
the unknown By is replaced by Bg. The
range of integration of dr is over the interior
of the waveguide (22>0).

The above theory will now be applied
to nonsymmetric obstacles in waveguide
extending a distance d in the = direction (see

5 The symbol + stands for the Hermitian adjoint.



